
Automatic Partial Loop Summarization
in Dynamic Test Generation

Patrice Godefroid
Microsoft Research
Redmond, WA, USA

pg@microsoft.com

Daniel Luchaup
∗

University of Wisconsin Madison
Madison, WI, USA

luchaup@cs.wisc.edu

ABSTRACT

Whitebox fuzzing extends dynamic test generation based on sym-
bolic execution and constraint solving from unit testing to whole-
application security testing. Unfortunately, input-dependent loops
may cause an explosion in the number of constraints to be solved
and in the number of execution paths to be explored. In practice,
whitebox fuzzers arbitrarily bound the number of constraints and
paths due to input-dependent loops, at the risk of missing code and
bugs.

In this work, we investigate the use of simple loop-guard pattern-
matching rules to automatically guess an input constraint defining
the number of iterations of input-dependent loops during dynamic
symbolic execution. We discover the loop structure of the program
on the fly, detect induction variables, which are variables modified
by a constant value during loop iterations, and infer simple partial
loop invariants relating the value of such variables. Whenever a
guess is confirmed later during the current dynamic symbolic ex-
ecution, we then inject new constraints representing pre and post
loop conditions, effectively summarizing sets of executions of that
loop. These pre and post conditions are derived from partial loop
invariants synthesized dynamically using pattern-matching rules on
the loop guards and induction variables, without requiring any static
analysis, theorem proving, or input-format specification. This tech-
nique has been implemented in the whitebox fuzzer SAGE, scales
to large programs with many nested loops, and we present results
of experiments with a Windows 7 image parser.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms

Verification, Algorithms, Reliability

∗The work of this author was done mostly while visiting Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07 ...$10.00.

Keywords

Program Testing and Verification, Loop Invariant Generation, Pro-
gram Summarization

1. INTRODUCTION
Dynamic test generation [11, 6] consists of running a program

while simultaneously executing the program symbolically in order
to gather constrains on inputs from conditional statements encoun-
tered along the execution. Those constraints are then systematically
negated and solved with a constraint solver, generating new test in-
puts to exercise different execution paths of the program. Over the
last few years, whitebox fuzzing [12] has extended the scope of
dynamic test generation from unit testing to whole-program secu-
rity testing, thanks to new techniques for handling very long exe-
cution traces (with billions of instructions). In the process, white-
box fuzzers have found many new security vulnerabilities (buffer
overflows) in Windows [12] and Linux [14] applications, including
codecs, image viewers and media players. Notably, our whitebox
fuzzer SAGE found roughly one third of all the bugs discovered by
file fuzzing during the development of Microsoft’s Windows 7 [10].
Since 2008, SAGE has been continually running on average 100+
machines automatically “fuzzing” hundreds of applications in a
dedicated security testing lab. This represents the largest compu-
tational usage ever for any SMT solver, according to the authors of
the Z3 SMT solver [7].

Unfortunately, the number of paths to be explored can be astro-
nomical. For instance, the presence of a single loop whose number
of iterations depends on some unbounded input makes the number
of feasible program paths infinite. Such a pathological case is illus-
trated in the small program example shown in Figure 1, where the
number of iterations of the while loop depends on the input value
x0 stored in variable x at the beginning of the program execution.

Suppose we start testing this program with an initial input value
x0 = 10 for x. The first path constraint generated will be (x0 >
0) ∧ (x0 − 1 > 0) ∧ · · · ∧ (x0 − 9 > 0) ∧ (x0 − 10 <= 0). In-
deed, the path constraint is defined as a conjunction of tests on in-
puts that the program executes along the execution. In other words,
symbolic execution in dynamic test generation [11, 6] only tracks
direct data dependencies on program inputs, not indirect dependen-
cies. Negating each of the constraints in the path constraint one by
one will generate new tests (10 in this example), that will exer-
cise new whole-program paths. This process can be repeated, in
principle possibly forever if x0 can be any unbounded integer. In
practice, tools like SAGE include counters to bound the number of
constraints that can be generated from a particular program branch.
This heuristics effectively prunes the search space in an unsound
manner, i.e., may fail to exercise code and miss bugs.

In this paper, we investigate an alternative approach based on

1 vo id main (i n t x) { / / x i s an i n p u t

2 i n t c = 0 , p = 0 ;
3 whi le (1) {
4 i f (x <=0) break ;
5 i f (c == 50) a b o r t 1 () ; /∗ e r r o r 1 ∗ /

6 c = c + 1 ;
7 p = p + c ;
8 x = x − 1 ;
9 }

10 i f (c == 30) a b o r t 2 () ; /∗ e r r o r 2 ∗ /

11 }

Figure 1: A simple program with an input-dependent loop.

automatic (partial) loop-invariant generation which, when applica-
ble, can (partially) summarize a loop body during a single dynamic
symbolic execution. This allows reasoning about many loop un-
foldings in one shot, by treating all of these as members of a single
symbolic equivalence class of executions. Intuitively, in the ex-
ample of Figure 1, the key to generate inputs to exercise the two
aborts, hence to prove their reachability, is to relate the value of
program variable c with the input x0. In this case, this relation-
ship is indirect and not captured by symbolic execution. However,
it is captured by the loop invariant c + x = x0 holding in lines 3
to 5, where c and x denote the current value of variables c and x,
respectively. When the loop terminates and executes line 10, we
have x = 0 and the loop invariant can be simplified to obtain the
(partial) loop postcondition c = x0. In both cases, thanks to the
loop invariant, we obtain a symbolic expression for c which relates
its value to the input value x0.

Given this loop invariant, it is then possible to summarize [9]
the loop body with a logic formula of the form preloop ∧ postloop,
where preloop is a loop precondition defining a set of executions
covered by the summary, and postloop is a loop postcondition cap-
turing (perhaps only partially) side-effects occurring during those
executions. For our example, a loop summary can be defined by
the precondition preloop = (x0 > 0), characterizing all program
executions where the loop body is executed at least once, and the
(partial) postcondition postloop = (x = 0) ∧ (c = x0), which
captures only partially side-effects resulting from such executions,
namely the effects on variables x and c but not p. Such a summary
thus generalizes the specific current execution (where x0 = 10) to
a set of executions (where x0 > 0), and is akin to loop-acceleration
techniques used in infinite-state model checking.

We present in this paper an algorithm for automatically gener-
ating such loop summaries dynamically, during (a single) dynamic
symbolic execution. This algorithm detects the loop structure of
the current program execution on the fly, as well as input-dependent
loops. It also tracks induction variables, which are variables mod-
ified by a constant value during each loop iteration. Our algo-
rithm includes a (partial) loop-invariant generator that uses pattern-
matching rules on the loop guards to guess the number of loop it-
erations, and can infer loop invariants relating values of induction
variables, a restricted but common class of loop invariants. This
algorithm does not require any user annotations, input-format spec-
ifications, theorem proving, or static analysis. It is also applicable
to any program, including nested loops, loops with multiple guards,
and arbitrary control-flow graphs with unstructured loops and go-
tos.

When the loop is about to start executing its last iteration dur-
ing the current dynamic symbolic execution, our algorithm updates
the current path constraint and symbolic execution state with new
constraints representing pre and post loop conditions that (partially)
summarize and generalize the symbolic execution of that loop. Pro-
gram variables appearing in post-conditions are associated with

symbolic values relating them to input values. This way, subse-
quent tests on those program variables, either inside the body of
the loop (as in line 5) or after the loop terminates (as in line 10 in
Figure 1), are added to the path constraint.

In our example, when dynamic symbolic execution with x0 =
10 starts its last (10th) iteration, the loop is summarized by preloop =
(x0 > 0) and postloop = (x = 1) ∧ (c + x = x0), the path con-
straint is updated to become (x0 > 0), and variable c is associated
with the new symbolic value x0− 1 (since c = x0−x and x = 1).
Then, when the conditional statement on line 5 is executed, the
constraint (x0 − 1) 6= 50 is added to the path constraint. After
negating this last constraint, a solution to the new path constraint
(x0 > 0) ∧ (x0 − 1 = 50) is x0 = 51, which leads to a new
test hitting the abort1 statement on line 5. Later, when dynamic
symbolic execution exits the loop and reaches line 10, the path con-
straint is now (x0 > 0) ∧ ((x0 − 1) 6= 50), and variable c is now
associated with the symbolic value (x0 − 1) + 1 (because of the
symbolic execution of line 6 in the 10th iteration), that is, x0 after
simplification. Then, when the conditional statement on line 10 is
executed, the constraint x0 6= 30 is added to the path constraint.
After negating this last constraint, a solution to the new path con-
straint (x0 > 0)∧ ((x0−1) 6= 50)∧ (x0 = 30) is x0 = 30, which
leads to a new test hitting the abort2 statement on line 10.

To sum up, for the example of Figure 1, a single dynamic sym-
bolic execution augmented with automatic partial loop summariza-
tion can generate two new tests that will lead directly to the two
abort statements, plus one to negate (x0 > 0), and the system-
atic search will then stop after a total of 4 tests (namely, with x0

equal to 10, 51, 30 and 0), instead of running forever.

2. BACKGROUND

2.1 Dynamic Test Generation
Dynamic test generation (see [11] for further details) consists of

running the program P under test both concretely, executing the
actual program, and symbolically, calculating constraints on values
stored in program variables and expressed in terms of input pa-
rameters. Side-by-side concrete and symbolic executions are per-
formed using a concrete store M and a symbolic store S, which
are mappings from memory addresses (where program variables
are stored) to concrete and symbolic values respectively. A sym-

bolic value is any expression e in some theory T where all free
variables are exclusively input parameters. For any memory ad-
dress m, M [m] denotes the concrete value at m in M , while S[m]
denotes the symbolic value at m in S. For notational convenience,
we assume that S[m] is always defined and is simply M [m] by
default if no symbolic expression in terms of inputs is associated
with m in S. The notation + for mappings denotes updating; for
example, M ′ = M + [m 7→ e] is the same map as M , except that
M ′[m] = e.

The program P manipulates the memory (concrete and symbolic
stores) through statements that are abstractions of the machine in-
structions actually executed. We assume a statement can be an as-

signment of the form m← e (where m is an address and e is an ex-
pression), a conditional statement of the form if e then goto ℓ
where e denotes a boolean expression and ℓ denotes the location of
the unique1 next command to be executed when e holds, or stop
corresponding to a program error or normal termination.

Given an input vector I assigning a concrete value Ii to the i-
th input parameter, the evaluation of a program defines a unique

1We assume program executions are sequential and deterministic.

finite2 program execution. For a finite sequence w of statements
(i.e., a control path w), a path constraint φw is a quantifier-free
first-order formula over theory T that is meant to characterize the
input assignments for which the program executes along w. The
path constraint is sound and complete when this characterization is
exact, i.e., when the two following conditions are satisfied: (1) the
path constraint φw is sound when every input assignment satisfy-
ing φw defines a program execution following w; and (2) the path
constraint φw is complete when every input assignment following
path w is a satisfying assignment, or model, of φw.

Path constraints are generated by symbolically executing the pro-
gram and collecting input constraints at conditional statements, as
illustrated in Figure 4 where the lines prefixed with * should be
ignored for now. Initially, the path constraint is set to true. We
assume that every program execution starts in the same initial con-
crete store, except for input values Ii which may differ. For every
input Ii, we define initially S[m] = xi if m is an address storing in-
put Ii (denoted m ∈ I) and where xi denotes the symbolic variable
corresponding to input Ii. By construction, all symbolic variables
appearing in φw are variables xi corresponding to program inputs
Ii.

Systematic dynamic test generation [11] consists of systemati-
cally exploring all (or in practice many) feasible control-flow paths
of the program under test by using path constraints and a con-
straint solver. After executing a whole-program control-flow path
w, if a conditional statement of the form if e then goto ℓ is
reached, any satisfying assignment of the formula φw ∧ c (respec-
tively φw ∧ ¬c) where c = evaluate_symbolic(e), defines program
inputs that will lead the program to execute the then (resp. else)
branch of the conditional statement (assuming path constraints are
sound and complete).

Systematically testing and symbolically executing all feasible
program paths does not scale to large programs. Indeed, the number
of feasible paths can be exponential in the program size, or even in-
finite in the presence of loops with unbounded number of iterations.
This path explosion can be alleviated by performing symbolic ex-
ecution compositionally [9], using symbolic execution summaries.
For instance, a function summary φf for a function f is defined
as a logic formula over constraints expressed in theory T . φf can
be derived by successive iterations and defined as a disjunction of
formulas φwf

of the form φwf
= prewf

∧ postwf
, where wf de-

notes an intraprocedural path inside f , prewf
is a conjunction of

constraints on the inputs of f , and postwf
is a conjunction of con-

straints on the outputs of f . An input to a function f is any value
that can be read by f , while an output of f is any value written by
f . φwf

can be computed automatically from the path constraint for
the intraprocedural path wf [9]. A summary thus represents sym-
bolically a set of (intraprocedural) paths, which can be included in
a path constraint in order to generate tests to cover new branches
after the function f returns. By memoizing symbolic execution
sub-paths as symbolic test summaries that are re-usable during the
search, a systematic search can become exponentially faster than a
non-compositional one. See [9] for further details. In this paper,
we show how to generate automatically such symbolic summaries
for input-dependent loops.

2.2 Loops and Induction Variables
The control-flow graph (CFG) of a function is a directed graph

whose nodes represent program locations and whose edges repre-
sent possible transitions of the control flow between locations, i.e.,

2We assume program executions terminate. In practice, a timeout
prevents non-terminating program executions and issues a runtime
error.

1 vo id main (i n t x , y , z){ / / x , y , z ar e i n p u t s

2 i n t cy = 0 , y1 =0 , done = 0 ;
3 whi le (1) {
4 GX: i f (x <=0) {
5 done = 1 ;
6 break ;
7 }
8 y1=y ;
9 whi le (1) {

10 GY: i f (y1 <=0) break ;
11 y1−−;
12 cy = cy +1 ;
13 }
14 GZ : i f (z <=0) break ;
15 x−−;
16 z−−;
17 }
18 i f (cy == y∗101)
19 a b o r t () ;
20 }

Figure 2: Example with nested loops.

header:main:1

header:3

header:9

nodes:1,2,5,6, 18,19

nodes:3,4,8,15,16

nodes:9,10,11,12

Figure 3: Loop tree for main in Figure 2.

there is an edge from n1 to n2 if the statement located at n2 can
be executed immediately after the statement located at n1 in some
program execution. The start node of the graph is the entry point in
the function. An exit node is associated with all return statements.
A node n1 dominates another node n2 if n1 belongs to every path
from the start node to n2. A loop is a strongly connected compo-
nent in the control flow graph. The header of a loop is a node of
the loop which dominates all other nodes in the loop. Not all loops
have a header. Loops with a header are called reducible loops or
normal loops, and their header is unique. The nesting relation be-
tween reducible loops in a CFG forms a loop tree. Each node in
a loop tree represents a loop with its header and its body (the list
of nodes inside the loop), and its successors correspond to other
nested loops. By convention, the root (a node without a parent) of
the loop tree represents the entry point in the function with the start
node as its header. As an example, Figure 3 shows the loop tree for
the main function in Figure 2. The statement at line 11 belongs to
two loops, with headers at lines 3 and 9 respectively; the latter loop
is called the innermost loop for line 11.

A program trace is a sequence of program locations, l1, l2, ..., lN ,
as they are executed by a particular run of a program. For two lo-
cations in a trace, we write lm ≃ ln if they represent the same
program location, and lm ⋄ ln if they execute during the same func-
tion invocation. Given the static CFG for each function in a pro-
gram, we define the following dynamic concepts relative to a pro-
gram trace. A loop L is entered by lj if lj ∈ L ∧ lj−1 6∈ L (if a
loop has a header, it is its entry point). A loop L is exited by lk if
lk ∈ L ∧ lk+1 6∈ L. If L is entered by lj and exited by lk, we say
that lk matches lj if k = min{i|j < i∧ lj ⋄ li ∧L is exited by li}
(the loop entry and exit behave as matching open and closed paren-
thesis). A loop activation is the sequence of locations in a trace
between a loop entry and the matching loop exit.3 An iteration

3Since we assume every program execution terminates, every loop
terminates.

1 e x e c u t e S y m b o l i c (P, I) {
2 I n i t i a l i z e memory M ;
3 S = [m→ xi|m ∈ I] ;
4 pc= I n i t i a l program c o u n t e r ; p a t h _ c o n t r a i n t = true ;
5 s= s t a t e m e n t _ a t (pc) ;
6 ∗ LoopRecord L ;
7 whi le s 6∈ { s t o p } {
8 ∗ L = g e t C u r r e n t L o o p (pc) ;
9 ∗ i f (L 6= NULL ∧ pc == L . h e a d e r) {

10 ∗ L . i t e r a t i o n = L . i t e r a t i o n + 1 ;
11 ∗ i f (L . i t e r a t i o n == 1) {
12 ∗ c r e a t e L . IVT and L . GT t a b l e s ;
13 ∗ } e l s e {
14 ∗ updateIVT (L . i t e r a t i o n , L . IVT) ;
15 ∗ g u e s s _ p o s t c o n d i t i o n s (L . i t e r a t i o n , L . IVT , L . GT) ;
16 ∗ } }
17 s wi tch (s) {
18 cas e m← e :
19 ∗ i f (L6= NULL ∧m 6∈ L .MOD) {
20 ∗ L .MOD[m] . V = M [m] ;

21 ∗ L .MOD[m] . V S = S [m] ;
22 ∗ i f (L . i t e r a t i o n ==1) {
23 ∗ L . IVT [m] . V = M [m] ;

24 ∗ L . IVT [m] . V S = S [m] ;
25 ∗ } }
26 S = S + [m→ e v a l u a t e _ s y m b o l i c (e)] ;
27 M = M + [m→ e v a l u a t e _ c o n c r e t e (e)] ;
28 pc=pc +1 ;

29 cas e if e then goto pc′ :
30 b= e v a l u a t e _ c o n c r e t e (e) ;
31 c= e v a l u a t e _ s y m b o l i c (e) ;
32 ∗ i f (L 6= NULL) updateGT (pc , e , L . i t e r a t i o n , L . GT) ;
33 i f (b) {
34 p a t h _ c o n s t r a i n t = p a t h _ c o n s t r a i n t ∧ c ;
35 pc=pc ’ ;
36 } e l s e {
37 p a t h _ c o n s t r a i n t = p a t h _ c o n s t r a i n t ∧ ¬ c ;
38 pc=pc +1 ;
39 } }
40 s = s t a t e m e n t _ a t (pc) ;
41 } }

Figure 4: Path constraint generation during dynamic symbolic

execution. Lines prefixed by * are new.

for a loop activation with entry point lj is a sequence of instruc-
tions li, li+1, ..., lm contained in that loop activation such that li ≃
lm+1 ≃ lj ∧ li ⋄ lm+1 ⋄ lj and ∀lx ∈ {li+1, , ..., lm}¬(lx ≃
lj ∧ lx ⋄ lj). The Execution Count (EC) for a loop activation is the
number of loop iterations contained in that activation. A loop L is
active at a program location l part of a trace if l is included in an
activation of L.

For a particular activation of a loop L, we define:

DEFINITION 1. An induction variable (IV) is a variable that

changes by a nonzero constant amount during each iteration of that

loop activation.

DEFINITION 2. A condition is linear if it is of the form (LHS�

RHS) where � ∈ {<,≤, >,≥, 6=, =}. A conditional statement

is IV-dependent if its condition is linear and if a dummy variable

assigned the value LHS − RHS at that statement location is an

IV inside L.

DEFINITION 3. A guard of a loop L is a conditional jump state-

ment that has one target inside the loop and the other outside the

loop. A guard for an activation of L is IV-dependent if its condi-

tion is IV-dependent for that activation of L.

3. SUMMARIZING INDIVIDUAL LOOPS
We now describe how dynamic symbolic execution can be ex-

tended to automatically generate partial loop summaries that are
usable for test generation. Figure 4 shows a modified procedure
executeSymbolic with new lines prefixed with a *.

1 updateIVT (i t e r a t i o n , IVT) {
2 i f (iteration == 2) {
3 f o r v ∈ IV T {

4 IVT [v] . dV = M [v] − IVT [v] . V ; / / 1st v a l u e change

5 IVT [v] . dV S = S [v] − IVT [v] . V S ;
6 IVT [v] . V = M [v] ; / / u s ed t o compute f u t u r e dV

7 }
8 } e l s e { / / purge f a i l e d IV c a n d i d a t e s

9 f o r v ∈ IVT {
10 dV = M [v]− IV T [v].V ; / / c u r r e n t change i n v a l u e

11 i f (dV 6= IVT [v] . dV) / / changed by same amount ?

12 remove v from IVT ; / / v i s n o t an IV

13 e l s e

14 IVT [v] . V = M [v] ; / / u s ed t o compute f u t u r e dV

15 }
16 }
17 }

Figure 5: updateIVT.

To simplify the presentation, we start by discussing in this sec-
tion how to summarize loops in programs that contain a single re-
ducible loop L with a known header L.header in a single non-
recursive function (as in the example of Figure 1). We also assume
for now that, for any given statement, we can tell whether its loca-
tion is in L or not. Also assume that all basic data types are integers
of the same size. These simplifying assumptions will be lifted in
the next sections.

These assumptions however do not tell us if the loop has IVs
or IV-dependent guards. We infer this information dynamically.
We do so using two tables, one for “IV candidates” (IVT) and one
for “IV-dependent guard candidates” (GT). These tables (described
later) record both concrete and symbolic values of variables or con-
ditions that might be induction variables or IV-dependent guards.
Concrete values are used to discard non-IV candidates from the ta-
bles, and symbolic values are used later during loop summarization.

For every location, we start by finding the loop it belongs to (line
8 of executeSymbolic in Figure 4), if any. If this is the header of the
loop (line 9), then a new loop iteration starts. If this is the beginning
of the first iteration (line 11), then we create the two tables (line
12), otherwise we update the IV Table (line 14) and check if we
can guess loop invariants (line 15), as discussed later.

3.1 IV candidates Table (IVT)
In order to find IVs, we track the variables modified inside the

loop and eliminate those that are unchanged or that change by dif-
ferent amounts in two consecutive iterations. We maintain this in-
formation in an Induction Variable candidates Table (IVT) with one
entry per candidate variable containing:

• V = concrete value when the control reaches the header.

• dV = V(2) − V(1) the change in concrete value between the
first two iterations.

• V S = symbolic value at the loop entry.

• dV S = V S

(2)−V S

(1) = symbolic change in value between the
first two iterations.

When the loop header is encountered for the first time, an empty
IVT is created. Each variable modified in the first iteration gets an
entry in the IVT (indexed by the address of the variable), where
we record its starting concrete and symbolic values (lines 22-24 of
executeSymbolic in Figure 4). We record those initial values before
the first time the variable is written inside the loop because we need
the initial value which the variable had at the loop entry. The use
of the MOD table (lines 19 to 21) will be explained later, when we
discuss nested loops.

when? IVT changes

Iteration line Var V dV V S

1 3 - - - -

1 6 c 0 - 0

1
c 0 - 0

7 p 0 - 0

1
c 0 - 0
p 0 - 0

8 x 10 - x0

2 3
c 1 1 0
p 1 1 0
x 9 -1 x0

3 3
c 2 1 0
6 p 3 1 0
x 8 -1 x0

4 3
c 3 1 0
x 7 -1 x0

.......................................

10 3
c 9 1 0
x 1 -1 x0

Figure 6: Finding IVs in the example of Figure 1.

After the first iteration, we only update or remove entries from
the IVT table, and keep just those candidates that change by the
same constant amount between every two iterations. Procedure
updateIVT shown in Figure 5 performs these updates. When we
encounter the loop header the second time, for each variable in
the table, we compute and store in the IVT the difference dV =
V(2) − V(1) between the current value and the saved one (line 4
of updateIVT). We then save the symbolic value of the difference
dV S = V S

(2) − V S

(1), for potential summarization later (in Fig-
ure 10), and we update the current value V . Each time we reach
the header at subsequent iterations, for each variable in IVT we
compare the initially saved dV with the current dV (line 10 in Fig-
ure 5), and remove entries where they do not match since IVs must
change by the same amount at each iteration. We update the IVT
once per iteration, rather then after each memory operation, be-
cause for each induction variable we need the cumulative effects of
the entire iteration, rather than local changes.

Figure 6 shows how the IVT is updated during the symbolic ex-
ecution of the example in Figure 1 with x0 = 10. (dV S is always
equal to dV for this example and not shown in the figure.) When
the control reaches the loop header for the first time (iteration 1 in
line 3 of Figure 1), an empty IVT is created. When we perform
the write at line 6 and variable c changes from 0 to 1, we add an
entry for c, and record its starting value 0. We also add one entry
for each of p and x at lines 7 and 8 respectively. Variable p changes
by 1 between the first two iterations and by 2 between the 2nd and
3rd iteration, so it is then removed from the IVT, since it cannot be
an IV.

3.2 Guard candidates Table (GT)
Similarly, we maintain a Guard candidates Table (GT) in order to

detect IV-dependent conditions for possible guards of a loop. When
the loop header is encountered for the first time, an empty GT is
created (line 12 of Figure 4). Whenever a conditional statement is
executed during dynamic symbolic execution (see line 32 of Fig-
ure 4), we call Procedure updateGT shown in Figure 7 to maintain
and use this table. We track guard candidates that are conditional
statements with a symbolic expression of the form (LHS�RHS),
where � ∈ {<,≤, >,≥, 6=, =}. Lines 2 and 3 of updateGT filter
out candidates that do not satisfy this requirement. For each guard
candidate, we store:

• B = concrete boolean value.

• D = (LHS−RHS) the distance between the two operands.

1 updateGT (pc , cond , i t e r , GT) {
2 i f (cond i s not s ymbol i c
3 ∨cond i s not (LHS � RHS) wi th � ∈ {<,≤, >,≥, 6=, =}
4 ∨ (i t e r > 1 ∧ pc 6∈ GT)
5 ∨bo th t a r g e t s o f s t a t e m e n t _ a t (pc) a r e i n s i d e loop)
6 re turn ;
7 B = e v a l u a t e _ c o n c r e t e (cond) ;
8 D = e v a l u a t e _ c o n c r e t e (LHS − RHS) ;
9 i f (i t e r ==1) {

10 GT[pc]= new e n t r y , wi th GT[pc] . h i t ==0
11 GT[pc] . B = B ;
12 GT[pc] . D = D ;

13 GT[pc] . DS = e v a l u a t e _ s y m b o l i c(LHS − RHS) ;
14 GT[pc] . loc = c u r r e n t _ l o c (p a t h _ c o n s t r a i n t) ;
15 }
16 e l s e i f (i t e r ==2) {
17 GT[pc] . dD = D − GT[pc] . D ;

18 DS = e v a l u a t e _ s y m b o l i c(LHS − RHS) ;

19 dDS = DS − GT[pc] . DS ;
20 s wi tch (’� ’) {
21 cas e ≤ : {
22 i f (D > 0) {
23 i f (dD < 0) {

24 DcondS = DS > 0 ;

25 dDcondS = dDS < 0 ;

26 GT[pc] . EC = GT [pc].D−GT [pc].dD−1
−GT [pc].dD

;

27 GT[pc] . ECS =
GT [pc].DS

−dDS
−1

−dDS
;

28 } e l s e . . .
29 } e l s e . . .
30 }
31 . . . ;
32 }
33 }
34 GT[pc] . h i t =GT[pc] . h i t +1 ;
35 i f (GT[pc] . h i t 6= i t e r) / / c a n d i d a t e s s h o u l d e x e c u t e

36 { remove pc from GT; re turn } / / once e v e r y i t e r a t i o n

37 i f (GT[pc] . B 6= B∧GT[pc] . pend ing∧ i t e r ==GT[pc] . EC + 1)
38 g u e s s _ p r e c o n d i t i o n s (pc , GT) ;
39 i f (GT[pc] . B 6= B∨ GT[pc] . dD 6= D − GT[pc] . D)
40 remove pc from GT;
41 e l s e {
42 GT[pc] . D = D ;
43 GT[pc] . pclocs . append (c u r r e n t _ l o c (p a t h _ c o n s t r a i n t)) ;
44 }
45 }

Figure 7: updateGT.

Note that B = (LHS �RHS) ≡ ((LHS−RHS)�0) ≡
(D � 0), where ≡ denotes logical equivalence.

• DS = the first symbolic value for D.

• dD = D − old(D) the change in concrete value between
two successive loop iterations.

• EC = the expected execution count. This is the number of
loop iterations that the condition evaluates to B, assuming
that (LHS −RHS) is indeed an IV.

• ECS = the symbolic value for EC.

• hit = the number of times the candidate was encountered.
An IV-dependent guard should be encountered once at each
iteration.

• DcondS , dDcondS = constraints on DS and dDS under
which ECS holds.

• pclocs = list of locations in the path constraint for con-
straints generated for this guard candidate.

• loc = first location in pclocs.

We represent a path constraint as a list of flippable constraints
(i.e., constraints which are later negated one by one to explore al-
ternative program executions – see Section 2). New constraints
are appended to the list, as in lines 34 and 37 of Figure 4. The call
current_loc(path_constraint) (Figure 7) returns a pointer to the

when? GT changes

Iteration line B D dD EC ECS hit

1 3 - - - - - -

1 4 F 10 - - - 1

2 4 F 9 -1 10 x0 2

...

10 4 F 1 -1 10 x0 10

11 4 T 0 -1 10 x0 11

Figure 8: Finding guard candidates in Figure 1.

tail of the list path_constraint (pointing to the next constraint be-
ing appended, if any). The call remove(path_constraint, loc)
(Figure 9) removes the constraint at location loc from the list. The
call replace(path_constraint, loc, ctr) (Figure 9) replaces the
constraint at location loc in the list by ctr; if ctr is a conjunction,
each conjunct is to be treated as an individual flippable constraint
(but subconjuncts are not).

During the first loop iteration, we add guard candidates as we
execute them, indexed by their program location. For each new
candidate, we check whether its condition is symbolic and matches
a pattern we handle (lines 2 and 3); if so, we compute and record
its initial value B (lines 7,11), D = (LHS − RHS) (lines 8,12),
and DS (line 13), and we initialize and increment (line 34) its hit
count which becomes 1 for new candidates. At line 14, we save
the current location in the path constraint. During the second loop
iteration, we compute and save the difference dD = D − old(D)
(line 17) in order to check if D changes by the same amount during
every other iteration. We also compute and save EC and ECS .
This is a function of �, D, dD, and depends on which branch of
� stays in the loop. For instance, assuming unbounded integers for
simplicity, if � is ≤ whose else branch stays in the loop (as in
Figure 1, line 4), then we have (F denotes False or “else”):

ECF (≤, D, dD) =

8

>

<

>

:

0 if D ≤ 0

∞ if D > 0 ∧ dD ≥ 0

(D − dD − 1)/ − dD if D > 0 ∧ dD < 0

Lines 21-27 of updateGT correspond to the last case of the above
formula; they execute only if D > 0∧dD < 0 and compute EC =
(D− dD− 1)/− dD. Because the formula for ECS computed at
line 27 is valid only if D > 0 ∧ dD < 0, we save these constraints
(lines 24,25) in order to add them later to the path constraint, in case
a summarization uses ECS . At subsequent iterations, we remove
GT entries which cannot be IV-dependent guards (lines 36, 39-40).
Lines 37-38 are used for loop summarization and explained later.

Figure 8 shows the changes of the GT for the example of Figure 1
(for clarity we do not show some fields such as DS and loc). When
the loop is activated (iteration 1 line 3), an empty GT is created.
When the control reaches line 4 for the first time, we add an entry
identified by that program location (the current value of the pc) with
the condition x ≤ 0, and store the values B = False, D = 10
and DS = x0. We also record in loc the current location in the
path constraint. The second time we visit line 4, we compute D =
9, dD = 9 − 10 = −1, EC = (10 − (−1) − 1)/ − (−1) = 10
and ECS = (x0 − (−1) − 1)/ − (−1) = x0 since � is ≤ and
D > 0 ∧ dD < 0. We also insert the condition x0 > 0 in the path
constraint at loc. At subsequent iterations, we only check that it is
still a valid candidate, and update D and hit.

3.3 Loop Summarization
Recall from Section 2.2 that for a given program trace, a loop

activation is the sequence of instructions between a loop entry and
the matching loop exit. Since a loop exit is inside the loop and

1 g u e s s _ p r e c o n d i t i o n s (pc , GT) {
2 c t r = true ;
3 f o r l ∈ GT i n i n s e r t i o n o r d e r {
4 f o r pos ∈ GT [l].pclocs {
5 i f pos 6= GT [G1].loc

6 remove (p a t h _ c o n s t r a i n t , pos) ;
7 }

8 c t r = c t r ∧ GT [l].DcondS ;

9 c t r = c t r ∧ GT [l].dDcondS ;
10 }
11 f o r l ∈ GT i n i n s e r t i o n o r d e r {
12 i f (l 6= pc) {
13 c t r = c t r ∧ (Min (l) = f a l s e) ;
14 } e l s e {
15 c t r = c t r ∧ (Min (l) = true) ;
16 break ;
17 }
18 }
19 r e p l a c e (p a t h _ c o n s t r a i n t , GT [G1].loc , c t r) ;
20 }

Figure 9: guess_preconditions.

1 s y m b o l i c _ u p d a t e (v , V0
S dV S , ECS) {

2 V S = V0
S + dV S ∗ (ECS − 1) ;

3 S = S + [v → V S] ;
4 }
5 g u e s s _ p o s t c o n d i t i o n s (i t e r a t i o n , IVT , GT) {
6 i f (GT [l].pending i s true f o r some l ∈ GT)
7 re turn ; / / a n o t h e r s u m m a r i z a t i o n pend ing

8 f o r l ∈ GT i n i n s e r t i o n o r d e r {
9 i f (GT [l].EC == iteration) { / / l a s t i t e r . p r e d i c t e d

10 f o r v ∈ IVT {

11 s y m b o l i c _ u p d a t e (v , IVT[v].V S ,IVT[v].dV S ,GT[l].ECS) ;
12 }
13 GT [l].pending = true ;
14 break ;
15 }
16 }
17 }

Figure 10: guess_postconditions.

the location of the next statement is outside the loop, a loop exit
is always a loop guard. At a loop exit, the current path constraint
and symbolic store represent only the current execution with a spe-
cific number of loop iterations. We now describe how to generalize

the symbolic execution of that loop from that specific number of
iterations to a set of possible loop executions.

The key idea is to generate a loop summary which characterizes
(perhaps only partially) such a set of executions. The generation of
a loop summary is performed in two steps: (1) generate precondi-

tions, and (2) generate postconditions.
Before we describe these two steps, we point out the following

property which holds under the assumptions of Section 2 and will
be useful shortly:

LEMMA 1. (GT Completeness) Given a loop L, if every loop

guard is symbolic and IV-dependent, then

1. every guard is executed once during each full iteration.

2. the relative execution order of the guards is fixed: if guard

G2 executes after guard G1 during some iteration, then G2

executes after G1 during all iterations.

3. all guards are in the GT table at the beginning of the second

iteration (if there is such an iteration).

Loop Precondition. Consider an input-dependent loop L with
a symbolic IV-dependent guard G at location pc and which exe-
cutes a fixed GT [pc].EC number of iterations on a given dynamic
symbolic execution. By construction, GT [pc].EC is the concrete
value of GT [pc].ECS , and the value of the symbolic expression

GT [pc].ECS determines the number of iterations of that loop,
provided the conditions GT [pc].DcondS and GT [pc].dDcondS

are satisfied. Because this expression is symbolic, i.e., input de-
pendent, we can control this number of iterations via test inputs.
Thus, the loop precondition GT [pc].DcondS ∧GT [pc].dDcondS

allows us to generalize a single concrete execution with exactly
GT [pc].EC loop iterations to a set of executions where the num-
ber of loop iterations is defined by the symbolic (input-dependent)
expression GT [pc].ECS .

When a loop L has more than one symbolic IV-dependent guards,
the guard with the smallest execution count is the one which will
“expire first” and hence controls the number of loop iterations.
Thanks to Lemma 1, we know that there is a fixed total ordering
among the execution order of all such guards. For simplicity, we
assume that the guards are numbered in in increasing order accord-
ing to this ordering: G1, G2, ..., and let us write G1 < G2 if guard
G1 precedes guard G2. Then, the guard G whose execution count
expires first can be characterized by the predicate Min(G) defined
as the conjunction of constraints

∀G′ 6= G

(

GT [G].ECS < GT [G′].ECS if G′ < G

GT [G].ECS ≤ GT [G′].ECS if G < G′

When the loop exits through Gk, all the input constraints that were
inserted for all loop guards of L in the current path constraint force
the loop L to iterate exactly GT [Gk].EC times. In order to gener-
alize this specific execution, we remove all such constraints and re-
place them by the following conjunction of k flippable constraints:

¬Min(G1) ∧ ¬Min(G2) ∧ ... ∧ ¬Min(Gk−1) ∧Min(Gk)

The Min(Gk) constraint forces all other symbolic IV-dependent
guards G′ to expire after guard Gk. The seemingly redundant
¬Min(Gi) (for i < k) constraints in the precondition are inserted
before Min(Gk) in order to ensure the completness of the overall
search: other program executions outside the set of executions de-
fined by this precondition will be eventually explored/covered by
dynamic test generation when those new individual constraints are
flipped later during the systematic search.

The loop precondition is computed by procedure guess_pre-
conditions shown in Figure 9, which also updates the path con-
straint. This procedure is called in line 38 in updateGT (Figure 7)
when the loop is exited by guard G (detected in line 37). Updating
the path constraint at this point (instead of, say, the last visit of the
loop header L.header) ensures that all the constraints due to loop
guards are in the path constraint and hence that all of those can be
removed. The loop precondition is injected at the location of the
first constraint of the first IV guard for L in the path constraint.

Loop Postcondition. Given the loop precondition defined above,
we want to capture all the side-effects through induction variables
whose value depends indirectly on inputs. When all side-effects
inside the loop are exclusively through IVs, the symbolic values
of IVs define the set of all possible states reachable by program
executions satisfying the loop precondition.

Each time procedure executeSymbolic reaches the loop header
L.header in line 15 of Figure 4, procedure guess_postconditions
(shown in Figure 10) is called and it searches the GT table for a
guard G whose EC indicates that this is the start of the last com-
plete iteration. If this is the case, remember that GT [G].ECS

is the symbolic expression that defines the number of loop itera-
tions for any program execution characterized by the loop precon-
dition we defined above. Then, for each IV v in IVT (line 10 of
guess_postconditions), we update the symbolic store S: we set
S[v] equal to the symbolic value V S + dV S ∗ (GT [G].ECS − 1),

where V S is the symbolic value of v at the entry of the loop, and
dV S is the symbolic delta value between any two loop iterations.
Indeed, this expression defines/predicts the value of v at the begin-
ning of the last full loop iteration parametrized by GT [G].ECS ,
which itself defines the number of loop iterations when G is the
first expiring symbolic IV-dependent loop guard.

Note that we perform the symbolic memory update when the
execution reaches the loop header at the beginning of the last com-
plete loop iteration rather than when the loop exits. This way, we
are able to generate constraints on IVs if there are tested inside the
body of the loop during the last loop iteration until the loop ex-
its (like the abort in line 5 of Figure 1). In contrast, removing
all constraints due to guards in L is easier done after they are all
included in the path constraint, i.e., when the loop exits.

Considering again the simple example of Figure 1 with an ini-
tial value of x0 = 10, there is only one loop guard (located at
line 4) and its ECS is x0 (see the GT in Figure 8). At the be-
ginning of the 10th loop iteration, line 15 of executeSymbolic in
Figure 4 calls guess_postconditions (Figure 10), which detects
that this is the start of the last complete iteration of the loop. At
that moment, the IVT contains two IVs (see Figure 6), namely c
and x. guess_postconditions then updates their symbolic values
as V S + dV S ∗ (GT [G].ECS − 1), i.e., the symbolic value of
c becomes 0 + 1 ∗ (x0 − 1), that is x0 − 1, while the symbolic
value of x becomes x0 + (−1) ∗ (x0 − 1), which is 1. Now, c is
symbolic, and so is the condition at line 5 for which a constraint
((x0 − 1) 6= 50) is added to the path constraint. When the loop
guard at line 4 is reached for the 11th time, procedure updateGT
(Figure 7) in line 37 detects that the boolean condition B of the
guard indeed changes, that this guard was used to update the sym-
bolic memory earlier (via the pending boolean flag), and the iter-
ation is one greater than the predicted EC. After all these sanity
checks, guess_preconditions is called to update the path con-
straint. All the constraints (x0 > 0) ∧ (x0 > 1) ∧ ... ∧ (x0 >
9) ∧ (x0 − 10 ≤ 0) accumulated inside the loop are removed
and replaced by just GT [pc].DcondS ∧GT [pc].dDcondS , that is
x0 > 0, at the location of the first constraint in the path constraint.
Later, when the constraint ((x0 − 1) 6= 50) is negated, a solution
to the new path constraint (x0 > 0) ∧ ((x0 − 1) = 50), namely
x0 = 51, leads to a test hitting the abort1 statement. The case
for the abort2 statement is similar and as discussed in Section 1.

The following theorem defines the correctness (and hence the
guiding design principles) of the algorithms presented in this sec-
tion.

THEOREM 2. (Correctness) Consider a program P with a sin-

gle loop L. Assume that path constraint generation performed dur-

ing dynamic symbolic execution is sound and complete, that all

variables modified inside the loop are induction variables, and that

every loop guard is symbolic and IV-dependent. Then, if the loop

is executed at least three times during a loop activation, loop sum-

marization is performed, the resulting generalized path constraint

is sound, and the overall search is complete.

In practice, loops may have symbolic guards that are not IV-
dependent, or have side-effects through non-IV variables. In those
cases, our algorithm for loop summarization can still be used as a
“best effort” approach to limit path explosion but without sound-
ness and completeness guarantees. However, our algorithm may
still be sound and complete in some of those cases. For instance,
consider again the simple example of Figure 1. This example con-
tains a loop which has side-effects via variable p, which is not an
induction variable. Therefore, the loop summarization performed
by our algorithm for this example is not sound and complete for

all possible contexts in which the loop may be executed. How-
ever, for the specific context provided by function main in Figure 1,
our loop summarization is actually sound and complete, since vari-
able p is never read after the loop terminates. Why would a loop
have side-effects that are not read afterwards? In practice, this can
happen when populating data structures inside a loop that are used
later by another program or module that is not the focus of the
current testing session. For instance, an image processor parses
input files, populates data structures, and then passes pointers to
such data structures to a graphics card; if we are interested in find-
ing security-critical buffer-overflow bugs in the image parser itself,
populating some of the data structures may look like write-only op-
erations during symbolic execution of the image parser itself.

4. SUMMARIZING NESTED LOOPS
In this section, we lift the simplifying assumptions made in Sec-

tion 3 regarding the program structure: we now allow an arbitrary
number of possibly recursive functions with an arbitrary number of
possibly nested loops. But we still assume for now that we know
the control flow graph, including its loop structure.

In the presence of recursion, a loop can have multiple nested
activations at the same time. Each activation requires its own can-
didate tables which are no longer needed after it exits. In a manner
similar to function activation records, we keep track of loop activa-
tions using loop records which are maintained using a loop stack.
The record for the innermost loop activation is always on top of the
stack. The loop context is the dynamic state of the loop stack.

Procedure getCurrentLoop uses the CFG to determine the static
loop membership of the current program counter pc. When a loop
is activated, getCurrentLoop creates a corresponding loop record
and pushes it on the loop stack thus entering a new loop context.
For this purpose, a function call is considered entering a new loop.
This is consistent with the loop tree structure where the root is the
function entry point, not a real loop. Procedure getCurrentLoop

always returns the record on top of the loop stack, which contains
the IVT and GT tables for the current loop. When a function ter-
minates or one or more loops terminate, their records are removed
from the stack.

Consider a variable v which is modified inside a function call
or a loop nested inside some loop L, but which is not written by
any statement immediately contained in L. In this case v does not
get added to L’s IVT at lines 23-24 of executeSymbolic (Figure 4),
and yet it may be an induction variable for L. To account for such
cases, we use the MOD table to propagate to parent loops informa-
tion about variables that are modified inside children loops. This
is why each time a new variable is modified in a given context, we
save its initial concrete and symbolic values at lines 21-20 of exe-

cuteSymbolic. When a record is removed from the context stack,
we propagate the information in MOD to the record of the enclos-
ing context, and if the parent loop is executing its first iteration,
we then also update its IVT. However, we do not change the en-
tries for variables already changed in the parent context. This way,
all modified variables become IV candidates for a loop, even those
modified only in a sub-loop or sub-function. Except for the main-
tenance of the loop stack and the propagation of the MOD table,
summarization in the general case is performed in a similar way
to the single loop case. It is always performed one loop at a time,
independently of the summarization of other loops.

In practice, we limit the depth to which we propagate MOD in-
formation in order to reduce the memory overhead. Also note that
it is possible that a guard exits more than one loop. For instance, if
L′ is nested inside L, a conditional statement inside L′ may have a
target outside L. However, we believe it is unlikely that such a con-

(a) (b) (c) (b) (d) ...

...

La[1] La[1] La[1] La[1] La[1] ...
Lb[3] Lb[3] Lb[3] Lb[3]

Lc[9] Ld[9]

Figure 11: Loop Contexts for Figure 2. Each function call or

loop activation creates a new context. Lx[H] denotes a loop

record on top of the stack for context (x) and for a loop activa-

tion with header at program line H .

ditional statement is an IV-dependent guard for the outer loop, and
in the spirit of our “best effort” approach, our algorithm does not
handle such corner cases. We can nevertheless prove the following.

THEOREM 3. (General Correctness) Consider a program P con-

taining only reducible loops. Consider a loop L whose guards are

all symbolic, IV-dependent and exits only L (therefore, no guard of

L is contained inside a loop nested in L). Further assume that path

constraint generation during dynamic symbolic execution is sound

and complete, and that all variables modified inside L are induc-

tion variables. Then, if L is executed at least three times during an

activation, loop summarization is performed, the resulting gener-

alized path constraint is sound, and the overall search is complete.

Consider the example in Figure 2 and the initial input values
x0 = 10, y0 = 20, z0 = 30. Figure 11 shows the evolution of the
loop stack. When main is called, a new loop record is pushed on
the loop stack, and the program enters context (a). When the outer
loop is activated we create and push on the loop stack loop record
Lb, and enter context (b). The first activation of the inner loop is
executed in context (c) with Lc on top of the stack. At the end of
this activation we pop Lc and return to context (b). The second
activation of the inner loop is performed in context (d) with Ld on
top of the stack, etc.

During the first activation of the inner loop, variables y1 and cy
are recorded in Lc.MOD and Lc.IV T . At the end of this ac-
tivation, the summarization of Lc replaces the constraints due to
guard GY in the path constraint by the loop precondition y0 > 0.
At that point of the symbolic execution, we have S[y1] = 0 and
S[cy] = y0. When we pop Lc from the context stack, we prop-
agate Lb.MOD[cy] = Lc.MOD[cy], and since Lb is still dur-
ing its first iteration, we also copy Lb.IV T [cy] = Lc.IV T [cy].
Note that, due to the assignment at line 8, y1 is already contained
in Lb’s tables and no updates for y1 are needed. At the end of
the second activation of the inner loop, we summarize Ld and we
then have S[cy] = y0 + y0. Each time we exit the inner loop in
Figure 2, we return to context (b). In this context, we remove y1
from Lb.IV T because it has the same value at the loop header.
During the second iteration of Lb, we compute IV T [x].DS =
−1, IV T [cy].DS = y0, IV T [z].DS = −1, GT [GX].ECS =
x0 and GT [GZ].ECS = z0. Because x0 = 10 and z0 = 30,
we have x0 < z0 and we exit the loop through GX after x0 = 10
iterations. At the beginning of the last iteration, we perform the fol-
lowing symbolic updates using Lb.GT [GX].ECS = x0 as the ex-
ecution count: S[x] = x0−(x0−1), S[cy] = y0∗(x0−1), S[z] =
z0 − (x0 − 1). After we summarize the inner loop one more time,
we get S[cy] = y0 ∗ (x0 − 1) + y0. After the last two decrements
inside Lb (in lines 15 and 16), we reach line 18 with the symbolic
state S[x] = x0 − (x0 − 1) − 1 = 0, S[cy] = y0 ∗ x0, S[z] =
z0 − (x0 − 1)− 1 = z0 − x0 and S[y] = y0.

When we exit the outer loop, summarization of that loop re-
moves the constraints at GX and GZ from the path constraint,

and replaces those with the loop precondition (x0 > 0) ∧ (z0 >
0)∧ (x0 ≤ z0) since GX < GZ. At line 18, the conditional state-
ment is executed and the constraint y0 ∗ x0 6= y0 ∗ 101 is added to
the path constraint. Later, when the constraint y0 ∗ x0 6= y0 ∗ 101
is negated, a solution to the new path constraint (x0 > 0) ∧ (z0 >
0)∧(x0 ≤ z0)∧(y0∗x0 = y0∗101), for instance x0 = 101, y0 =
1, z0 = 101, leads to a test hitting the abort statement.

5. IMPLEMENTATION ISSUES
Here we remove the rest of the simplifying assumptions from

Section 3 regarding the program structure. We no longer assume
that we have knowledge about the static structure of the program or
size information for variables.

5.1 Detecting Loops Dynamically
In practice we do not have the control flow graph for program

functions and we want to infer loop information dynamically. The
Dynamic CFG (DCFG) is the dynamically built CFG whose nodes
are the statements executed so far in the current function. It is rep-
resented as a regular CFG together with a current node which cor-
responds to the current pc. There is one DCFG per function activa-
tion record, shared by all loop records inside that function. When
we create a new loop record for a function, we also create a new
DCFG which contains only the root node. For each instruction,
when we call getCurrentLoop, it first updates the DCFG before it
uses it. If there is no node corresponding to the current pc, we cre-
ate one. We add an edge in the current DCFG between the nodes
corresponding to the previous pc and the current one, if such an
edge does not already exist. The node corresponding to the current
statement becomes the current one in the DCFG. We avoid the ex-
pensive computation of the loop tree and only invoke it when a new
edge is added between two existing nodes. When an existing edge
between existing nodes is traversed, there is no need to change the
DCFG or its loop structure; we just update the current node. For
edges between an existing node and a new one, we simply assume
that the new node is part of the current loop (potentially subject
to the uncertain exit issue described below) and we patch the loop
information accordingly, in constant time.

LEMMA 4. Let L be the innermost loop containing the current

node of a DCFG built based on a program execution. Then the ad-

dition of the next node in the execution does not change the header

of L or any of its enclosing loops.

Therefore the changes in the DCFG are consistent with the loop
stack, by not changing the headers of the active loops.

When compared to static loop detection, dynamic loop detection
suffers from two limitations. The first one is that we only detect
a loop L when we execute its header for the second time. As a
result, the entire first iteration of L looks as if it was unrolled and
part of L’s parent loop. We call this a lost iteration. The effect on
summarization is that detecting a loop requires an additional iter-
ation for the “unrolled” loop, and summarization covers only the
remainder of that loop’s activation. The unrolled part of a loop ex-
ecutes in the context of the parent and does not impact its summa-
rization. The IV candidates of the parent are not affected, because
all the writes inside the parent’s activation (which contains the un-
rolled sequence) must be accounted for anyway. Guard candidates
inserted in parent’s GT are later discarded based on mismatches
between the number of iterations and the hit counter.

The second limitation is that when we execute a new statement
not already in the DCFG, we cannot tell whether it belongs to the
last active loop or not. As a result, there are cases when we do not

Mode Loop Sum. Regular

Unique branches 5,455 -
Unique symbolic branches 300 -
Unique loops 231 -
Unique loops w. symb. cond. 19 -
Unique loops w. right guesses 6 -

Loop summarizations 25 -
Constraints removed 78 -
Total symbolic updates 56 -

Constraint cache queries 26,260 26,198
Total solver queries 9,163 9,155
Solver queries SAT 383 384
Solver queries UNSAT 8,780 8,771
Solver queries timeout 0 0
Total seconds spent in solver 858 769
Total analysis time (secs) 2,600 1,658
Peak memory usage (Mb) 512 366

Figure 12: Experimental results for ANI.

know that we actually have exited a loop until we reach a return
statement, or the header of a parent loop. Whether we are still
inside of the loop or not depends on future instructions, which we
have not seen yet. We call this issue uncertain exit. For instance,
when the control reaches line 5 from Figure 2 we cannot tell just
by looking at the DCFG if we are still inside the loop or not: at
line 6 there could be any instruction, including a return or continue.
The effect on summarization is that we have to be conservative at
line 5 of updateGT and treat all conditional statements as possible
guards. We also have to be conservative and consider that we do
not exit a loop L unless we follow an existing edge in the DCFG
that leads outside L, or we reach a return, or we reach a statement
that dominates L’s header.

5.2 Variable Sizes
When a memory location is modified for the first time in a con-

text, we also record in the IVT the number of bytes written. For an
IV candidate v, this is the inferred size of the corresponding vari-
able and it is used whenever we need to find the amount of memory
to read to obtain the concrete value M [v]. If a variable v has a size
larger than the maximum size that can be written in a single state-
ment, then a logical update of v may be performed in several write
operations, say a write to v.low and v.high. Our current imple-
mentation (see next section) treats v.low and v.high as distinct IV
candidates. In practice, the probability for errors due to this sce-
nario is small. If v is not an IV, then the likelihood that either of
v.low or v.high behaves as an IV is small. If v is indeed an IV
and the increment is not very large, then most likely only v.low
changes and is detected as an IV.

6. EXPERIMENTAL RESULTS
We have implemented the algorithms presented in the previous

section in the whitebox fuzzer SAGE [12], which uses the Z3 SMT
solver [7]. SAGE performs dynamic symbolic execution at the x86
binary level, does not require source code, and is optimized to scale
to very long program executions possibly with billions of x86 in-
structions.

We report in this section preliminary experiments conducted with
our prototype implementation and the ANI image parser embed-
ded in Windows 7. Running this parser with a sample well-formed
ANI (ANimated Icon) input file of 13,302 bytes results in a pro-

Input size (bytes) 2504 11326 7908 3272 4592 11346 1700 800 15902 6362 4100 818
Total analysis time (secs) 391 649 958 465 205 746 362 10 22 1611 555 249
Unique branches 5459 5446 5479 5461 5460 5440 5451 3008 3146 5454 5474 5447
Unique symbolic branches 272 269 263 271 275 272 254 7 105 288 272 282
Unique loops 231 228 232 230 229 228 229 125 133 229 232 230
Unique loops w. symb. cond. 17 19 16 17 19 20 16 0 4 18 17 17
Unique loops w. right guesses 2 5 5 5 1 5 0 0 0 5 5 2
Loop summarizations 22 23 30 36 2 17 0 0 0 48 23 5

Figure 13: Experimental results for 12 other ANI input files.

gram execution with 1,874,649 x86 instructions executed, includ-
ing 1,417,441 instructions executed after the first input byte is being
read from the input file. The number of unique x86 instructions ex-
ecuted is about 30,000 which are spread over 15 different Windows
dlls.

The Table in Figure 12 presents experimental data obtained dur-
ing a single dynamic symbolic execution and constraint solving
along the program execution defined when parsing this sample ANI
file. The table presents data for both regular SAGE and with loop
summarization. A “-” means the data is undefined or unknown.

During the entire program execution, 5,455 unique conditional
statements are executed, among which 300 are symbolic, and 231
unique loops are detected dynamically by our implementation (see
the previous section). Among these 231 loops, 19 are detected to
contain one or more symbolic guards and are thus possibly input-
dependent. Our algorithm is able to successfully guess the number
of iterations for 6 of those 19 loops. Those 6 loops are summarized
25 times in total, i.e., there are 25 summarized loop activations
(some of the 6 loops are thus executed and summarized succes-
sively more than once during the entire program execution). These
25 summarizations remove a total of 78 constraints out of the path
constraint and perform a total of 56 symbolic memory updates (i.e.,
there are 56 instances of induction variables modified during the 25
loop summarizations). The total number of constraints in the path
constraint is 26,260, but only 9,163 are unique (duplicates are re-
moved as cache hits). To solve those constraints, 9,163 calls are
made to the Z3 SMT solver, resulting in 383 satisfiable constraints,
8,780 unsatisfiable constraints and no (5secs) timeouts. The total
execution time spent in Z3 is 858 secs. Overall, symbolic execu-
tion and constraint solving takes 2,600 secs and requires 521 Mb of
memory.

We observe that few loops are detected to have symbolic guards
(19 out of 231), among which only 33% (6) of those are guessed
correctly and hence summarized. To find out why, we visually in-
spected these 19 loops and collected additional statistics (not shown
here). Some of those 19 loops that are not summarized have non-IV
guards typically involving pointers as in the following pattern

for (j = 0; j < x; j++) { // x is input-dependent

if (array[j] == NULL) // non-IV guard

break;

array[j] = data; ... }

Another reason is that some input-dependent loops are executed
only once or twice, which is insufficient for our dynamic loop de-
tection and summarization algorithms to kick in. We also tried
12 other ANI input files, but were unable to exercise such loops
a larger number of times – see the table in Figure 13.

We also observe that the number of iterations for the loops that
are summarized is low, resulting in only 78 constraints being re-
moved from the path constraint. However, the total number of
unique constraints (total solver queries) remains about the same:
the removal of constraints due to loop summaries is offset by new

constraints due to program branches testing IV-values part of post-
conditions and made symbolic by the 56 symbolic updates. More-
over, most of the removed constraints and of the new constraints
on IV-values are satisfiable, so the overall number of SAT con-
straints remains about the same (for this experiment with a small
well-formed input file where symbolic loops are executed only a
small number of times).

Remember the model of each SAT constraint is used to define
a new test input file. Interestingly, the SAT constraints with loop
summarization gives the systematic search a head start as the new
constraints immediately exercise more new code: the incremen-
tal instruction coverage obtained by running all 383 generation-1
children tests with loop summarization is about 33% higher than
the incremental instruction coverage obtained by running all 384
generation-1 children tests without loop summarization.

This benefit comes at the cost of an about 50% overhead for both
total runtime and peak memory usage. This overhead is due to
all the extra book-keeping needed by our loop detection and sum-
marization algorithm, and is not due to constraint solving, which
remains roughly the same. We emphasize that our current proto-
type is a first non-optimized implementation of our new algorithm
– further optimizations might be able to reduce this cost.

Note that the long execution time of 1,658 secs for regular SAGE
is due to turning off all unsound optimizations and heuristics (such
as bounds on the number of constraints at specific branches, con-
straint subsumption, etc.) used by default in SAGE (see [12]).

The results of similar experiments with 12 other ANI input files
(including a randomly-generated bogus 800-bytes file) are shown
in Figure 13. These numbers confirm the trends observed above.

7. RELATED WORK AND CONCLUSIONS
The closest work related to ours is [17]. These authors also ob-

serve that standard symbolic execution does not track control de-
pendences and therefore forces loops to execute a fixed number
of iterations as in a concrete execution. For each program loop,
they define a trip count as a symbolic variable which represents
the number of times the loop is executed. They then propose to
run a separate static abstract-interpretation-based analysis to deter-
mine linear relations between program variables and trip counts.
Trip counts are themselves related to the input using a grammar de-
scribing the input format and supplied to the analysis. In contrast,
our approach is simpler: linear relations among induction variables
are inferred dynamically during a single dynamic symbolic execu-
tion, made explicit by symbolic store updates at loop summariza-
tion, and then propagated forward by regular symbolic execution.
Also, we infer loop counts based on simple pattern matching, and
do not require an input grammar. Our method however may miss
loop counts in cases of loops over delimited fields in the input,
which can be handled in [17] thanks to the input grammar; com-
bining our technique with the orthogonal length abstraction tech-
nique of [20] could reduce this limitation while still not relying

on any input grammar. Another difference is that loop structures
are defined/detected in [17] using static (binary) analysis. Instead,
we build the program’s loop structure on the fly, without additional
tools for static analysis. The price we pay is that sometimes we
may lose one iteration before detecting a loop, and that loop exits
are harder to detect (see Section 5.1). The computation overhead
introduced by our technique is reasonable, about 50% runtime and
memory, and we believe that optimizations can reduce it. Similar
measurements are not available from [17], which does not present
results of controlled experiments highlighting the specific contribu-
tion of the loop treatment (i.e., turned on versus off) in a dynamic
test generation tool. We use a context stack to handle arbitrary
nested loops and recursive functions; such cases are not discussed
in [17]. Finally, [17] does not define when (i.e., under which as-
sumptions) their approach is sound and/or complete.

In program verification using verification-condition generation, a
static program analysis generates a single logic formula represent-
ing the entire program (e.g., [4]). This formula typically uses one
symbolic variable for each program variable, and captures all con-
trol and data dependencies. This approach also typically requires
the user to provide a loop invariant for each program loop, as well
as pre and postconditions for individual functions. This in turns
allows for modular program reasoning. In contrast, dynamic test
generation [11, 6] generates logic formulas representing individual
whole-program paths one at a time. This allows logic encodings of
very long program executions [12], but suffers from path explosion
since many paths need be considered. Compositional dynamic test
generation [9, 1, 13] provide a practical tradeoff between these two
extreme logic program representations: intuitively, sets of (say in-
traprocedural) sub-paths can be bundled together in logic program
summaries using disjunctions of (intraprocedural) sub-path con-
straints, and injected in regular (interprocedural) whole-program
path constraints. Prior work on summarization in dynamic test gen-
eration describes algorithms for memoizing sub-path constraints,
for incrementally bundling them into logic summaries, and for hi-
erarchical search space exploration, but does not prescribe any spe-
cific procedure for dealing with loops. Our loop generalization and
summarization is complementary and can encode in one logic for-
mula possibly infinitely many loop executions.

Automatic loop invariant generation and summarization has been
discussed in numerous papers in the context of static program anal-
ysis, including for infinite-state model checking (e.g., [5]), soft-
ware model checking (e.g., [15]), predicate abstraction (e.g., [3]),
and termination analysis (e.g., [19]), to name a few. In contrast, the
main originality of our work is that it is based on detecting loop
structures, induction variables, IV-dependent guards and linear re-
lationships between those in a fully dynamic way – our algorithm
does not require any static program analysis. We are not aware of
any other entirely-dynamic loop-invariant generation algorithm.

Recently, dynamic test generation has been extended in various
ways and applied to other application domains (e.g., [8, 18, 2, 16]
among others). However, except for [17] and our paper, we are not
aware of any other paper specifically focused on how to deal with
input-dependent loops in dynamic test generation.

Acknowledgments. We thank Sumit Gulwani, Francesco Logozzo
and Cindy Rubio-Gonzalez for helpful comments on preliminary
versions of this work.

8. REFERENCES
[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-Driven

Compositional Symbolic Execution. In TACAS’2008, volume
4963 of LNCS, pages 367–381, Budapest, April 2008.
Springer-Verlag.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar,
and M. D. Ernst. Finding Bugs in Web Applications Using
Dynamic Test Generation and Explicit-State Model
Checking. IEEE Trans. Software Eng., 36(4):474–494, 2010.

[3] T. Ball, O. Kupferman, and M. Sagiv. Leaping Loops in the
Presence of Abstraction. In CAV’2007, Berlin, July 2007.

[4] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino. Boogie: A modular reusable verifier for
object-oriented programs. In FMCO’2005, volume 4111 of
LNCS, pages 364–387. Springer-Verlag, September 2006.

[5] B. Boigelot and P. Godefroid. Symbolic Verification of
Communication Protocols with Infinite State Spaces using
QDDs. In CAV’96, volume 1102 of LNCS, pages 1–12, New
Brunswick, August 1996. Springer-Verlag.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically Generating Inputs of Death. In
ACM CCS, 2006.

[7] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver.
In TACAS’2008, volume 4963 of LNCS, pages 337–340,
Budapest, April 2008. Springer-Verlag.

[8] M. Emmi, R. Majumdar, and K. Sen. Dynamic Test Input
Generation for Database Applications. In ISSTA’2007, pages
151–162, 2007.

[9] P. Godefroid. Compositional Dynamic Test Generation. In
POPL’2007, pages 47–54, Nice, January 2007.

[10] P. Godefroid. Software Model Checking Improving Security
of a Billion Computers. In SPIN’2009, volume 5578 of
LNCS, page 1, Grenoble, June 2009. Springer-Verlag.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In PLDI’2005, pages 213–223,
Chicago, June 2005.

[12] P. Godefroid, M.Y. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. In NDSS’2008, pages 151–166, San
Diego, February 2008.

[13] P. Godefroid, A.V. Nori, S.K. Rajamani, and S.D. Tetali.
Compositional May-Must Program Analysis: Unleashing
The Power of Alternation. In POPL’2010, pages 43–55,
Madrid, January 2010.

[14] D. Molnar, X. C. Li, and D. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux programs.
In Proc. of the 18th Usenix Security Symposium, Aug 2009.

[15] C. Pasareanu and W. Visser. Verification of Java Programs
Using Symbolic Execution and Invariant Generation. In
SPIN’2004, volume 2989 of LNCS, Barcelona, April 2004.
Springer-Verlag.

[16] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A Symbolic Execution Framework for JavaScript.
In IEEE Symposium on Security and Privacy, pages
513–528, 2010.

[17] P. Saxena, P. Poosankam, S. McCamant, and D. Song.
Loop-Extended Symbolic Execution on Binary Programs. In
ISSTA’2009, pages 225–236, Chicago, July 2009.

[18] N. Tillmann and J. de Halleux. Pex - White Box Test
Generation for .NET. In TAP’2008, volume 4966 of LNCS,
pages 134–153. Springer-Verlag, April 2008.

[19] A. Tsitovich, N. Sharygina, Ch. Wintersteiger, and
D. Kroening. Loop Summarization and Termination
Analysis. In To appear in TACAS’2011, April 2011.

[20] R. Xu, , P. Godefroid, and R. Majumdar. Testing for Buffer
Overflows with Length Abstraction. In ISSTA’2008, pages
27–38, Seattle, July 2008.

